孙凯, 田国清, 田宏, 段文超, 田洋, 陈立军
东北电力大学. 2012, 32(3): 26-30.
摘要 (
)
PDF全文 (
)
可视化
收藏
针对支持向量机相关参数很难预先确定合适的取值,而这些相关参数又对其分类精度有着很大影响的问题,本文利用改进的遗传算法(IGA)对支持向量机的相关参数进行了优化。将改进遗传算法优化的支持向量机(IGA-SVM)算法应用于汽轮机故障诊断中,并与标准遗传算法优化的支持向量机(GA-SVM)算法的识别结果进行比较。结果表明,IGA-SVM算法对故障数据能够得到较优的分类辨识结果,对汽轮机的故障诊断有显著的指导作用。