基于EEMD和BP神经网络的风机齿轮箱故障诊断方法

游子跃, 王宁, 李明明, 李亚强, 王皓

PDF(1021 KB)
PDF(1021 KB)
东北电力大学学报 ›› 2015, Vol. 35 ›› Issue (1) : 64-72.
电力系统

基于EEMD和BP神经网络的风机齿轮箱故障诊断方法

  • 游子跃1, 王宁1, 李明明2, 李亚强1, 王皓3
作者信息 +

Method Offan Fault Diagnosis of Gearbox Based on EEMD and BP Neural Network

  • YOU Zi-yue1, WANG Ning1, LI Ming-ming2, LI Ya-qiang1, WAMG Hao3
Author information +
History +

摘要

根据风机齿轮箱故障信号的非平稳特性,提出一种基于总体平均经验模式分解(EEMD)和BP神经网络的风机齿轮箱故障诊断方法。首先,对原始信号进行小波去噪。然后,对故障信号进行EEMD分解,将其分解为多个固有模态函数(Intrinsic Mode Function,简称IMF)之和,选取若干含有主要故障信息的IMF分量做进一步分析。最后,从各IMF分量中提取故障信号能量特征参数,将归一化后的能量特征参数作为BP神经网络输入参数进行故障诊断。实测结果表明:该方法故障诊断准确率达到了99%左右。可以准确、有效的对风机齿轮箱进行故障诊断。

Abstract

According to the non-stationary characteristics of wind turbine gearbox fault signal, propose a method of wind turbine gearbox fault diagnosis based on ensemble empirical mode decomposition (EEMD) and BP neural network.Firstly,use wavelet to denoise the original signal.Then, use EEMD to decompose the fault signal,which is decomposed into sum of several intrinsic mode functions (Intrinsic Mode Function,referred to as IMF),and select some main fault information for further analysis of IMF components.Finally,extract the energy feature parameters of fault signal from the IMF components, use the normalized energy characteristic parameters as the input parameters of the BP neural network for fault diagnosis of gearbox.Experimental results show that: the method of fault diagnosis accuracy rate has reached about 99%.This method can diagnose fault for wind turbine gearbox accurately and effectively.

关键词

风机齿轮箱 / 故障诊断 / EEMD / 神经网络 / 小波变换 / Lab VIEW

Key words

Wind turbine gearbox / Fault diagnosis / EEMD / Neural network / Wavelet transform / LabVIEW

引用本文

导出引用
游子跃, 王宁, 李明明, 李亚强, 王皓. 基于EEMD和BP神经网络的风机齿轮箱故障诊断方法. 东北电力大学学报. 2015, 35(1): 64-72
YOU Zi-yue, WANG Ning, LI Ming-ming, LI Ya-qiang, WAMG Hao. Method Offan Fault Diagnosis of Gearbox Based on EEMD and BP Neural Network. Journal of Northeast Electric Power University. 2015, 35(1): 64-72

基金

天津市科技兴海项目-海上风电机组的在线监测与故障预警平台研制及产业化(KJXH2012-13)

PDF(1021 KB)

405

Accesses

0

Citation

Detail

段落导航
相关文章

/