一类含有平方梯度项的塑性流体数学模型正解的存在性及正则性

侯冰, 张大鹏, 徐中海

PDF(265 KB)
PDF(265 KB)
东北电力大学学报 ›› 2018, Vol. 38 ›› Issue (4) : 90-93.
数学·物理·化学

一类含有平方梯度项的塑性流体数学模型正解的存在性及正则性

  • 侯冰, 张大鹏, 徐中海
作者信息 +

Existence and Regularity of Nonnegative Solution of Mathematical Model of A Plastic Fluid with Square Gradient Terms

  • Hou Bing, Zhang Dapeng, Xu Zhonghai
Author information +
History +

摘要

考虑塑性流体的下列边界退化椭圆问题

经典解的存在性及其正则性,其中:Ω={(x,y):x2+y2 < r02}⊂R2f1t)是定义在(-∞,+∞)上的非负且严格单调递增的光滑函数,gt)和ft)是定义在(0,+∞)上的非负且严格单调递减的光滑函数.应用正则化技术及精细的估计技巧,在一定条件下得到了问题(P)经典解的存在性及其正则性.显然,得到的结果比经典的结果更好.

Abstract

In this paper,we considered the singular quasi-linear anisotropic elliptic boundary value problem

where Ω={(x,y):x2+y2<r02}⊂R2. Clearly,this is a boundary degenerate elliptic problem. We show that the solution of the Dirichlet boundary value problem (P) was smooth in the interior and Lipschitz continuous up to the degenerate boundary. The regularity of solution of the problem (P) is more sharper than classical theory.

关键词

退化椭圆问题 / 存在性 / 正则性 / 先验估计

Key words

Degenerate elliptic problem / Existence / Regularity / Priori estimate

引用本文

导出引用
侯冰, 张大鹏, 徐中海. 一类含有平方梯度项的塑性流体数学模型正解的存在性及正则性. 东北电力大学学报. 2018, 38(4): 90-93
Hou Bing, Zhang Dapeng, Xu Zhonghai. Existence and Regularity of Nonnegative Solution of Mathematical Model of A Plastic Fluid with Square Gradient Terms. Journal of Northeast Electric Power University. 2018, 38(4): 90-93

参考文献

[1] A.Nachman,A.Callegari.A nonlinear singlar boundary value problem in the theory of pseudoplastic fluids[J].SIAM J.Appl.Math.,1986,38(2):271-281.

[2] C.A.Stuart.Existence theorems for a class of nonlinear integral equations[J].Math.Z.,1974,137(1):49-66.

[3] S.D.Taliaferro.A nonlinear singlar boundary value problem[J].Nonlinear Analysis TMA,1979,3(6):897-904.

[4] M.G.Crandall,P.H.Rabinowitz,L.Tartar.On a dirichlet problem with a singular nonlinearity[J].Comm.Partial Differential Equations,1977,2(2):193-222.

[5] A.C.Lazer,P.J.McKenna.On a singular nonlinear ellipic boundary value problem[J].Proc.Amer.Math.Soc.,1991,111(3):721-730.

[6] S.Canic,B.L.Keyfitz.An ellipict problem arising from the unsteady transonic small disturbance equation[J].Journal of differential Equations,1996,125(2):548-574.

[7] Y.S.Choi,A.C.Lazer,P.J.McKenna.On a singular quasilinear anisotropic elliptic boundary value problem[J].Trans.A.M.S.,1995,347(7):2633-2641.

[8] Y.S.Choi,P.J.McKenna.A singular quasilinear anisotropic elliptic boundary value problem Ⅱ[J].Trans.A.M.S.,1998,350(7):2925-2937.

[9] Y.S.Choi,E.H.Kim.On the existence of positive solution of quasilinear elliptic boundary value problems[J].Journal of Differential Equations,1999,155(2):423-442.

[10] F.St.Cirstea,V.D.Radulescu.Existence implies uniqueness for a class of singular anisotropic elliptic boundaryvalue problems[J].Mathematical Method in the Applied Sciences,2010,24(1):771-779.

[11] L.Dupaigne,M.Ghergu,V.Radulescu.Lane-Emden-Fowler equation with con-vection and singular potential[J].J.Math.Pures Appl.,2007,87(6):563-581.

[12] Zhang Zhijun,Jiangang Chen.Existence and optimal estimates of solution for singular nonlinear Dirichlet problems[J].Nonlinear Anal.,2004,57(3):473-484.

[13] Zhonghai Xu,Jiashan Zheng,Zhenguo Feng.Existence and regularity of nonnegative solution of a singular quasi-linear anisotropic elliptic boundary value problem with gradient terms[J].Nonlinear Analysis:Theory,Methods & Applications,2011,74(3):739-756.

[14] 徐中海.一类含有梯度项的塑性流体数学模型正解的存在性及正则性[J].厦门大学学报:自然科学版,2013,52(1):1-4.

[15] 徐中海,郑甲山,冯振国.具有相异奇性的拟线性边界退化椭圆边值问题正解的存在性及正则性[J].吉林大学学报:理学版,2010,48(4):567-573.

[16] 张大鹏,薛雯,朱秀丽,等.一类二阶常微分方程初值问题解的性质的完全证明[J].东北电力大学学报,2016,36(4):96-98.

[17] D.Gilbarg,N.S.Trudinger.Elliptic partial differential equations of second order[M].New York:Springer-Verlag,1977.

基金

吉林省自然科学基金(20150101002JC)

PDF(265 KB)

0

Accesses

0

Citation

Detail

段落导航
相关文章

/