基于正态云模型的果蝇优化算法

杜文军, 孙斌

PDF(854 KB)
PDF(854 KB)
东北电力大学学报 ›› 2018, Vol. 38 ›› Issue (6) : 68-74.
信息·计算机·自动化

基于正态云模型的果蝇优化算法

  • 杜文军, 孙斌
作者信息 +

The Fruit Fly Optimization Algorithm Based on Normal Cloud Model

  • Du Wenjun, Sun Bin
Author information +
History +

摘要

针对果蝇优化算法在寻优过程中易陷入局部最优、寻优结果对算法参数的选取依赖性较强而导致结果不稳定等现象,在研究相关理论的基础上从算法的结构上对算法性能进行分析,通过基准函数的测试研究了影响算法性能的主要因素,将云模型相关理论引入算法改进,从算法的寻优步长和最优解产生机制两方面对算法进行优化改进.在算法的嗅觉搜索阶段引入味道浓度影响因子,由味道浓度影响因子自适应动态调整算法的搜索步长,提高算法的全局搜索能力和局部寻优能力;在计算味道浓度阶段引入正态云模型,利用正态云发生器以果蝇个体到原点的距离为期望生成正态云,体现算法中果蝇个体味道浓度的随机性和模糊性,改进算法最优解的产生机制,提高算法的寻优精度.最后将改进后的算法应用于自动组卷系统,建立基于云模型果蝇优化算法的自动组卷数学模型,通过实验验证了算法在组卷效率和组卷精度上都具有较好的效果.

Abstract

In order to overcome the demerits of Fruit Fly Optimization Algorithm(FOA),such as easily relapsing into local optimum and unstable results which are caused by strong dependence on the selection of algorithm parameters,On the basis of studying the related theories,the performance of the Fruit Fly Optimization Algorithm is analyzed from the algorithm structure and the main factors affecting the performance of the algorithm are studied by benchmark function test.The cloud model theory is introduced into the algorithm improvement,and the algorithm is optimized and improved from two aspects:the optimal step size of the algorithm and the optimal solution generation mechanism.Firstly,the conception of taste concentration introduced and adjusted adaptively for controlling search step to improve the global search ability and local optimization ability of the algorithm.Then,the randomness and fuzziness of smell concentration parameter is described by normal cloud model and adjusted to finish osphresis search operation automatically to improve the searching precision of the algorithm.Finally,The improved algorithm is used to the automatic test,compared and analyzed with the experiment of other FOA in reference literatures.The results of experiment show that the improved algorithm has better advantages of test efficiency and accuracy.

关键词

果蝇优化算法 / 正态云模型 / 自动组卷

Key words

Fruit fly optimization algorithm / Normal cloud model / Automatic test

引用本文

导出引用
杜文军, 孙斌. 基于正态云模型的果蝇优化算法. 东北电力大学学报. 2018, 38(6): 68-74
Du Wenjun, Sun Bin. The Fruit Fly Optimization Algorithm Based on Normal Cloud Model. Journal of Northeast Electric Power University. 2018, 38(6): 68-74

参考文献

[1] D.Whitley.A genetic algorithm tutorial[J].Statistics and Computing,1994,4(2):65-85.

[2] K.M.Passino.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22(3):52-67.

[3] X.L.Li,Z.J.Shao,J.X.Qian.An optimizing method based on autonomous animats:fish-swarm algorithm[J].Systems Engineering-Theory&Practice,2002,22(11):32-38.

[4] M.Dorigo,V.Maniezzo,A.Colorni.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man and Cybernetics,1996,26(1):29-41.

[5] S.Mirjalili,S.M.Mirjalili,A.Lewis.Grey wolf optimization[J].Advances in Engineering Software,2014,69(7):46-61.

[6] W.T.Pan.A new fruit fly optimization algorithm:taking the financial distress model as an example[J].Knowledge-Based Systems,2012,26(2):69-74.

[7] D.Shan,G.H.Cao,H.J.Dong.LGMS-FOA:an improved fruit fly optimization algorithm for solving optimization problems[J].Mathematical Problems in Engineering,2013,2013(7):1256-1271.

[8] W.T.Pan.Using modified fruit fly optimisation algorithm to perform the function test and case studies[J].Connection Science,2013,25(2/3):151-160.

[9] Q.K.Pan,H.Y.Sang,J.H.Duan,et al.An improved fruit fly optimization algorithm for continuous function optimization problems[J].Knowledge-Based Systems,2014,62(5):69-83.

[10] L.Wang,Y.Shi,S.Liu.An improved fruit fly optimization algorithm and its application to joint replenishment problems[J].Expert Systems with Applications,2015,42(9):4310-4323.

[11] L.Wang,R.Liu,S.Liu.An effective and efficient fruit fly optimization algorithm with level probability policy and its applications[J].Knowledge-Based Systems,2016,97(C):158-174.

[12] J.Li,Q.Pan,K.Mao,et al.Solving the steelmaking casting problem using an effective fruit fly optimization algorithm[J].Knowledge-Based Systems,2014,72(12):28-36.

[13] 刘志雄,王雅芬,张煌.多种群果蝇优化算法求解自动化仓库拣选作业调度问题[J].武汉理工大学学报,2014,36(3):71-77.

[14] 韩俊英,刘成忠,王联国.动态双子群协同进化果蝇优化算法[J].模式识别与人工智能,2013,26(11):1057-1067.

[15] L.Wu,C.Zuo,H.Zhang.A cloud model based fruit fly optimization algorithm[J].Knowledge-Based Systems,2015,89(C):603-617.

[16] 张彩宏,潘广贞.融合禁忌搜索的混合果蝇优化算法[J].计算机工程与设计,2016,37(4):907-913.

[17] J.Niu,W.Zhong,Y.Liang,et al.Fruit fly optimization algorithm based on differential evolution and its application on gasification process operation optimization[J].Knowledge-Based Systems,2015,88(C):253-263.

[18] 崔金玲,吴迪.基于正态云模型的自适应果蝇优化算法[J].河南理工大学学报,2016,35(5):697-705.

[19] 韩虎.果蝇优化算法的分析[J].计算机系统应用,2016,26(2):9-17.

[20] 吴小文,李擎.果蝇算法和5种群智能算法的寻优性能研究[J].火力与指挥控制,2013,38(4):17-20.

[21] D.Shan,G.H.Cao,H.J.Dong.LGMS-FOA:an improved fruit fly optimization algorithm for solving optimization problems[J].Mathematical Problems in Engineering,2013,2013(7):1256-1271.

[22] 刘立群,韩俊英,代永强,等.果蝇优化算法优化性能对比研究[J].计算机技术与发展,2015,25(8):94-98.

[23] 李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20.

[24] 李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34.

[25] 杜文军,孙斌.基于正态云模型的自适应细菌觅食优化算法[J].东北电力大学学报,2017,37(5):102-108.

[26] 宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报:理工版,2014,31(4):367-373.
PDF(854 KB)

382

Accesses

0

Citation

Detail

段落导航
相关文章

/