ZENG Yangjun, LI Jiatong, XU Liuchao, QIU Yiwei, ZHOU Buxiang, ZHENG Yong, HE Ge, JI Xu
Abstract (
)
Knowledge map
Save
Integrated Photovoltaic Power to Hydrogen and Refueling (IPp2HR)systems effectively utilize solar energy resources,providing green hydrogen for hydrogen-powered transportation and other industries.They are a promising pathway for green hydrogen demonstration.However,current research on IPp2HR systems either overlooks the operational constraints of purification or focuses solely on day-ahead scheduling.Traditional purification systems use fixed operational sequences to dry crude hydrogen,which conflicts with the flexible,variable-load operation required to accommodate renewable energy fluctuations.To address this,a bi-level energy management method is proposed to improve IPp2HR system efficiency.First,a comprehensive model covering power to hydrogen,purification,storage,and refueling is developed.The purification process is transformed into a Mixed-Integer Linear Programming (MILP)model using the Big-M method and integrated into the scheduling framework.Second,a bi-level energy management framework is designed,combining day-ahead and rolling scheduling with real-time control.The day-ahead and rolling stages determine the on/off of electrolyzers based on PV forecasts and hydrogen demand,while the real-time stage adjusts power deviations to enhance PV utilization and operational benefits.A case study based on a hydrogen refueling station in Northeast China validates the proposed method.Results show that considering the purification heating and cooling logic prevents high-cost hydrogen caused by the inability to shutdown at high temperatures.The bi-level framework effectively coordinates day-ahead,rolling,and real-time stages,improving both PV utilization and operational profitability.